Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 28, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Automation transformed various aspects of our human civilization, revolutionizing industries and streamlining processes. In the domain of scientific inquiry, automated approaches emerged as powerful tools, holding promise for accelerating discovery, enhancing reproducibility, and overcoming the traditional impediments to scientific progress. This article evaluates the scope of automation within scientific practice and assesses recent approaches. Furthermore, it discusses different perspectives to the following questions: where do the greatest opportunities lie for automation in scientific practice?; What are the current bottlenecks of automating scientific practice?; and What are significant ethical and practical consequences of automating scientific practice? By discussing the motivations behind automated science, analyzing the hurdles encountered, and examining its implications, this article invites researchers, policymakers, and stakeholders to navigate the rapidly evolving frontier of automated scientific practice.more » « less
-
The preference for simple explanations, known as the parsimony principle, has long guided the development of scientific theories, hypotheses, and models. Yet recent years have seen a number of successes in employing highly complex models for scientific inquiry (e.g., for 3D protein folding or climate forecasting). In this paper, we reexamine the parsimony principle in light of these scientific and technological advancements. We review recent developments, including the surprising benefits of modeling with more parameters than data, the increasing appreciation of the context-sensitivity of data and misspecification of scientific models, and the development of new modeling tools. By integrating these insights, we reassess the utility of parsimony as a proxy for desirable model traits, such as predictive accuracy, interpretability, effectiveness in guiding new research, and resource efficiency. We conclude that more complex models are sometimes essential for scientific progress, and discuss the ways in which parsimony and complexity can play complementary roles in scientific modeling practice.more » « less
-
Constraints on control-dependent processing have become a fundamental concept in general theories of cognition that explain human behavior in terms of rational adaptations to these constraints. However, theories miss a rationale for why such constraints would exist in the first place. Recent work suggests that constraints on the allocation of control facilitate flexible task switching at the expense of the stability needed to support goal-directed behavior in face of distraction. Here, we formulate this problem in a dynamical system, in which control signals are represented as attractors and in which constraints on control allocation limit the depth of these attractors. We derive formal expressions of the stability-flexibility tradeoff, showing that constraints on control allocation improve cognitive flexibility but impair cognitive stability. Finally, we provide evidence that human participants adapt higher constraints on the allocation of control as the demand for flexibility increases but that participants deviate from optimal constraints.more » « less
An official website of the United States government

Full Text Available